
JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

Games and Simulation
2021-2022

Fernando Birra

Rui Nóbrega

JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

Graphics Rendering Pipeline

JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

Architecture

12 2. The Graphics Rendering Pipeline

We will explain the different stages of the rendering pipeline, with a focus on
function rather than implementation. Relevant details for applying these stages will
be covered in later chapters.

2.1 Architecture
In the physical world, the pipeline concept manifests itself in many different forms,
from factory assembly lines to fast food kitchens. It also applies to graphics rendering.
A pipeline consists of several stages [715], each of which performs part of a larger task.

The pipeline stages execute in parallel, with each stage dependent upon the result
of the previous stage. Ideally, a nonpipelined system that is then divided into n
pipelined stages could give a speedup of a factor of n. This increase in performance
is the main reason to use pipelining. For example, a large number of sandwiches can
be prepared quickly by a series of people—one preparing the bread, another adding
meat, another adding toppings. Each passes the result to the next person in line and
immediately starts work on the next sandwich. If each person takes twenty seconds
to perform their task, a maximum rate of one sandwich every twenty seconds, three
a minute, is possible. The pipeline stages execute in parallel, but they are stalled
until the slowest stage has finished its task. For example, say the meat addition
stage becomes more involved, taking thirty seconds. Now the best rate that can be
achieved is two sandwiches a minute. For this particular pipeline, the meat stage is
the bottleneck, since it determines the speed of the entire production. The toppings
stage is said to be starved (and the customer, too) during the time it waits for the
meat stage to be done.

This kind of pipeline construction is also found in the context of real-time com-
puter graphics. A coarse division of the real-time rendering pipeline into four main
stages—application, geometry processing, rasterization, and pixel processing—is shown
in Figure 2.2. This structure is the core—the engine of the rendering pipeline—which
is used in real-time computer graphics applications and is thus an essential base for

Application
Geometry
Processing Rasterization

Pixel
Processing

Figure 2.2. The basic construction of the rendering pipeline, consisting of four stages: application,
geometry processing, rasterization, and pixel processing. Each of these stages may be a pipeline in
itself, as illustrated below the geometry processing stage, or a stage may be (partly) parallelized, as
shown below the pixel processing stage. In this illustration, the application stage is a single process,
but this stage could also be pipelined or parallelized. Note that rasterization finds the pixels inside
a primitive, e.g., a triangle.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

12 2. The Graphics Rendering Pipeline

We will explain the different stages of the rendering pipeline, with a focus on
function rather than implementation. Relevant details for applying these stages will
be covered in later chapters.

2.1 Architecture
In the physical world, the pipeline concept manifests itself in many different forms,
from factory assembly lines to fast food kitchens. It also applies to graphics rendering.
A pipeline consists of several stages [715], each of which performs part of a larger task.

The pipeline stages execute in parallel, with each stage dependent upon the result
of the previous stage. Ideally, a nonpipelined system that is then divided into n
pipelined stages could give a speedup of a factor of n. This increase in performance
is the main reason to use pipelining. For example, a large number of sandwiches can
be prepared quickly by a series of people—one preparing the bread, another adding
meat, another adding toppings. Each passes the result to the next person in line and
immediately starts work on the next sandwich. If each person takes twenty seconds
to perform their task, a maximum rate of one sandwich every twenty seconds, three
a minute, is possible. The pipeline stages execute in parallel, but they are stalled
until the slowest stage has finished its task. For example, say the meat addition
stage becomes more involved, taking thirty seconds. Now the best rate that can be
achieved is two sandwiches a minute. For this particular pipeline, the meat stage is
the bottleneck, since it determines the speed of the entire production. The toppings
stage is said to be starved (and the customer, too) during the time it waits for the
meat stage to be done.

This kind of pipeline construction is also found in the context of real-time com-
puter graphics. A coarse division of the real-time rendering pipeline into four main
stages—application, geometry processing, rasterization, and pixel processing—is shown
in Figure 2.2. This structure is the core—the engine of the rendering pipeline—which
is used in real-time computer graphics applications and is thus an essential base for

Application
Geometry
Processing Rasterization

Pixel
Processing

Figure 2.2. The basic construction of the rendering pipeline, consisting of four stages: application,
geometry processing, rasterization, and pixel processing. Each of these stages may be a pipeline in
itself, as illustrated below the geometry processing stage, or a stage may be (partly) parallelized, as
shown below the pixel processing stage. In this illustration, the application stage is a single process,
but this stage could also be pipelined or parallelized. Note that rasterization finds the pixels inside
a primitive, e.g., a triangle.

Application
• Driven by the application and is typically implemented

in software, on the CPU

• Several cores can be used to handle different tasks in
parallel such as collision detection, acceleration
algorithms, animation, physics simulation, handle input,
…

• The developer has full control of this stage

• What is done here can affect the performance of later
stages. For instance, a better geometry pruning
algorithm may significantly reduce the number of
primitives to be rendered

• The GPU can help in this stage by using “compute
shaders”

• The final goal of this stage is to feed geometry data to
the next stage (rendering primitives)

Tiago
Realce

Tiago
Realce

Tiago
Realce

JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

12 2. The Graphics Rendering Pipeline

We will explain the different stages of the rendering pipeline, with a focus on
function rather than implementation. Relevant details for applying these stages will
be covered in later chapters.

2.1 Architecture
In the physical world, the pipeline concept manifests itself in many different forms,
from factory assembly lines to fast food kitchens. It also applies to graphics rendering.
A pipeline consists of several stages [715], each of which performs part of a larger task.

The pipeline stages execute in parallel, with each stage dependent upon the result
of the previous stage. Ideally, a nonpipelined system that is then divided into n
pipelined stages could give a speedup of a factor of n. This increase in performance
is the main reason to use pipelining. For example, a large number of sandwiches can
be prepared quickly by a series of people—one preparing the bread, another adding
meat, another adding toppings. Each passes the result to the next person in line and
immediately starts work on the next sandwich. If each person takes twenty seconds
to perform their task, a maximum rate of one sandwich every twenty seconds, three
a minute, is possible. The pipeline stages execute in parallel, but they are stalled
until the slowest stage has finished its task. For example, say the meat addition
stage becomes more involved, taking thirty seconds. Now the best rate that can be
achieved is two sandwiches a minute. For this particular pipeline, the meat stage is
the bottleneck, since it determines the speed of the entire production. The toppings
stage is said to be starved (and the customer, too) during the time it waits for the
meat stage to be done.

This kind of pipeline construction is also found in the context of real-time com-
puter graphics. A coarse division of the real-time rendering pipeline into four main
stages—application, geometry processing, rasterization, and pixel processing—is shown
in Figure 2.2. This structure is the core—the engine of the rendering pipeline—which
is used in real-time computer graphics applications and is thus an essential base for

Application
Geometry
Processing Rasterization

Pixel
Processing

Figure 2.2. The basic construction of the rendering pipeline, consisting of four stages: application,
geometry processing, rasterization, and pixel processing. Each of these stages may be a pipeline in
itself, as illustrated below the geometry processing stage, or a stage may be (partly) parallelized, as
shown below the pixel processing stage. In this illustration, the application stage is a single process,
but this stage could also be pipelined or parallelized. Note that rasterization finds the pixels inside
a primitive, e.g., a triangle.

Geometry Processing

• Responsible for applying transformations,
perform projection and additional handling
of geometry

• Determines what should be drawn, how it
should be drawn and where it should be
drawn

• It is generally executed in the GPU using
many cores and fixed-operation hardware

Tiago
Realce

Tiago
Realce

Tiago
Realce

JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

Geometry Processing

14 2. The Graphics Rendering Pipeline

stage algorithm or setting could decrease the number of triangles to be rendered.
All this said, some application work can be performed by the GPU, using a separate

mode called a compute shader. This mode treats the GPU as a highly parallel general
processor, ignoring its special functionality meant specifically for rendering graphics.

At the end of the application stage, the geometry to be rendered is fed to the
geometry processing stage. These are the rendering primitives, i.e., points, lines, and
triangles, that might eventually end up on the screen (or whatever output device is
being used). This is the most important task of the application stage.

A consequence of the software-based implementation of this stage is that it is
not divided into substages, as are the geometry processing, rasterization, and pixel
processing stages.1 However, to increase performance, this stage is often executed
in parallel on several processor cores. In CPU design, this is called a superscalar
construction, since it is able to execute several processes at the same time in the same
stage. Section 18.5 presents various methods for using multiple processor cores.

One process commonly implemented in this stage is collision detection. After a
collision is detected between two objects, a response may be generated and sent back
to the colliding objects, as well as to a force feedback device. The application stage
is also the place to take care of input from other sources, such as the keyboard, the
mouse, or a head-mounted display. Depending on this input, several different kinds of
actions may be taken. Acceleration algorithms, such as particular culling algorithms
(Chapter 19), are also implemented here, along with whatever else the rest of the
pipeline cannot handle.

2.3 Geometry Processing
The geometry processing stage on the GPU is responsible for most of the per-triangle
and per-vertex operations. This stage is further divided into the following functional
stages: vertex shading, projection, clipping, and screen mapping (Figure 2.3).

Projection ClippingVertex
Shading

Screen
Mapping

Figure 2.3. The geometry processing stage divided into a pipeline of functional stages.

1Since a CPU itself is pipelined on a much smaller scale, you could say that the application stage
is further subdivided into several pipeline stages, but this is not relevant here.

Tiago
Realce

Tiago
Realce

JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

Geometry Processing - Vertex Shading

• Major tasks to be performed:

1. compute the position for a vertex

2. specify the outputs per vertex (normals, texture coordinates, …)

• The “vertex shader” name comes from the fact that, in the past, it was common to compute the final color for each
vertex and have those colors interpolated across a triangle.

• More powerful hardware allowed the migration of the final color computation to be performed on a pixel level…

• … the vertex shader is now a general unit dedicated to setting up the data for each vertex (interpolation, animation, …)

14 2. The Graphics Rendering Pipeline

stage algorithm or setting could decrease the number of triangles to be rendered.
All this said, some application work can be performed by the GPU, using a separate

mode called a compute shader. This mode treats the GPU as a highly parallel general
processor, ignoring its special functionality meant specifically for rendering graphics.

At the end of the application stage, the geometry to be rendered is fed to the
geometry processing stage. These are the rendering primitives, i.e., points, lines, and
triangles, that might eventually end up on the screen (or whatever output device is
being used). This is the most important task of the application stage.

A consequence of the software-based implementation of this stage is that it is
not divided into substages, as are the geometry processing, rasterization, and pixel
processing stages.1 However, to increase performance, this stage is often executed
in parallel on several processor cores. In CPU design, this is called a superscalar
construction, since it is able to execute several processes at the same time in the same
stage. Section 18.5 presents various methods for using multiple processor cores.

One process commonly implemented in this stage is collision detection. After a
collision is detected between two objects, a response may be generated and sent back
to the colliding objects, as well as to a force feedback device. The application stage
is also the place to take care of input from other sources, such as the keyboard, the
mouse, or a head-mounted display. Depending on this input, several different kinds of
actions may be taken. Acceleration algorithms, such as particular culling algorithms
(Chapter 19), are also implemented here, along with whatever else the rest of the
pipeline cannot handle.

2.3 Geometry Processing
The geometry processing stage on the GPU is responsible for most of the per-triangle
and per-vertex operations. This stage is further divided into the following functional
stages: vertex shading, projection, clipping, and screen mapping (Figure 2.3).

Projection ClippingVertex
Shading

Screen
Mapping

Figure 2.3. The geometry processing stage divided into a pipeline of functional stages.

1Since a CPU itself is pipelined on a much smaller scale, you could say that the application stage
is further subdivided into several pipeline stages, but this is not relevant here.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

1. Compute the position of a vertex

• Go from models to objects in the scene by applying a modeling transformation to both vertices and normals

• The same model (base geometry) can be transformed using different modeling transformations (one for each instance)

• Original coordinates are defined in local coordinate system, while output coordinates are in a global/common
coordinate system (World Coordinates)

Model Object

Tiago
Realce

Tiago
Realce

JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

1. Compute the position of a vertex

• Only objects captured by the camera need to be rendered

• The camera has a location and orientation in the world and it can be used to transform the vertices of the instances from world to
camera coordinates (view transform)

• The local camera coordinates make projection and visible surface determination easier

• In camera coordinates, the camera is at the origin, looking towards the negative* z axis, with y pointing upwards

• Both the model transform and the view transforms can be implemented using 4x4 matrices and even be combined in a single matrix

16 2. The Graphics Rendering Pipeline

y

x

zc

xc

world space view space

Figure 2.4. In the left illustration, a top-down view shows the camera located and oriented as the
user wants it to be, in a world where the +z-axis is up. The view transform reorients the world so
that the camera is at the origin, looking along its negative z-axis, with the camera’s +y-axis up, as
shown on the right. This is done to make the clipping and projection operations simpler and faster.
The light blue area is the view volume. Here, perspective viewing is assumed, since the view volume
is a frustum. Similar techniques apply to any kind of projection.

the position and normal of a vertex can be computed in whatever way the programmer
prefers.

Next, we describe the second type of output from vertex shading. To produce a
realistic scene, it is not sufficient to render the shape and position of objects, but their
appearance must be modeled as well. This description includes each object’s material,
as well as the effect of any light sources shining on the object. Materials and lights can
be modeled in any number of ways, from simple colors to elaborate representations of
physical descriptions.

This operation of determining the effect of a light on a material is known as shading.
It involves computing a shading equation at various points on the object. Typically,
some of these computations are performed during geometry processing on a model’s
vertices, and others may be performed during per-pixel processing. A variety of mate-
rial data can be stored at each vertex, such as the point’s location, a normal, a color,
or any other numerical information that is needed to evaluate the shading equation.
Vertex shading results (which can be colors, vectors, texture coordinates, along with
any other kind of shading data) are then sent to the rasterization and pixel processing
stages to be interpolated and used to compute the shading of the surface.

Vertex shading in the form of the GPU vertex shader is discussed in more depth
throughout this book and most specifically in Chapters 3 and 5.

As part of vertex shading, rendering systems perform projection and then clip-
ping, which transforms the view volume into a unit cube with its extreme points at
(−1,−1,−1) and (1, 1, 1). Different ranges defining the same volume can and are
used, for example, 0 ≤ z ≤ 1. The unit cube is called the canonical view volume.
Projection is done first, and on the GPU it is done by the vertex shader. There are
two commonly used projection methods, namely orthographic (also called parallel)

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

2. Specify the outputs per vertex

• To generate a realistic scene we need more than geometry…

• The appearance of the objects must be modeled using materials and light sources

• Determining the effect of light on a surface is called shading and it envolves evaluating a shading equation at several points of
an object.

• From a set of per vertex input data (such as location, normals, texture coordinates, material properties or color) vertex shading
results (which can be colors, vectors, texture coordinates, …) are sent to the rasterization and pixel processing stages to be
interpolated and used in the final shading of the surface.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

Geometry Processing - Projection

• Projection is the transformation of the view volume into a canonical view volume (typically a cube ranging
from (-1,-1,-1) to (1,1,1)

• Both parallel and perspective view volumes (rectangular box and a truncated pyramid with rectangular base,
respectively) can be transformed to this canonical view volume, simplifying the operations performed next

• Projection can also be expressed as a 4x4 matrix and concatenated with the previous transformations

• Although these transformations change a volume into another, they are called projections because after
displaying the image, the z coordinate is stored in a different place (z-buffer) and the image generated is
thus 2D only

14 2. The Graphics Rendering Pipeline

stage algorithm or setting could decrease the number of triangles to be rendered.
All this said, some application work can be performed by the GPU, using a separate

mode called a compute shader. This mode treats the GPU as a highly parallel general
processor, ignoring its special functionality meant specifically for rendering graphics.

At the end of the application stage, the geometry to be rendered is fed to the
geometry processing stage. These are the rendering primitives, i.e., points, lines, and
triangles, that might eventually end up on the screen (or whatever output device is
being used). This is the most important task of the application stage.

A consequence of the software-based implementation of this stage is that it is
not divided into substages, as are the geometry processing, rasterization, and pixel
processing stages.1 However, to increase performance, this stage is often executed
in parallel on several processor cores. In CPU design, this is called a superscalar
construction, since it is able to execute several processes at the same time in the same
stage. Section 18.5 presents various methods for using multiple processor cores.

One process commonly implemented in this stage is collision detection. After a
collision is detected between two objects, a response may be generated and sent back
to the colliding objects, as well as to a force feedback device. The application stage
is also the place to take care of input from other sources, such as the keyboard, the
mouse, or a head-mounted display. Depending on this input, several different kinds of
actions may be taken. Acceleration algorithms, such as particular culling algorithms
(Chapter 19), are also implemented here, along with whatever else the rest of the
pipeline cannot handle.

2.3 Geometry Processing
The geometry processing stage on the GPU is responsible for most of the per-triangle
and per-vertex operations. This stage is further divided into the following functional
stages: vertex shading, projection, clipping, and screen mapping (Figure 2.3).

Projection ClippingVertex
Shading

Screen
Mapping

Figure 2.3. The geometry processing stage divided into a pipeline of functional stages.

1Since a CPU itself is pipelined on a much smaller scale, you could say that the application stage
is further subdivided into several pipeline stages, but this is not relevant here.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

Geometry Processing - Clipping

• After the projection transformation the objects are said to be in clip coordinates

• The GPU vertex shader must always output the corresponding clip coordinates
of the input vertex

• Clipping is the process of throwing away the parts of a primitive that do not lie
inside the canonical view volume.

14 2. The Graphics Rendering Pipeline

stage algorithm or setting could decrease the number of triangles to be rendered.
All this said, some application work can be performed by the GPU, using a separate

mode called a compute shader. This mode treats the GPU as a highly parallel general
processor, ignoring its special functionality meant specifically for rendering graphics.

At the end of the application stage, the geometry to be rendered is fed to the
geometry processing stage. These are the rendering primitives, i.e., points, lines, and
triangles, that might eventually end up on the screen (or whatever output device is
being used). This is the most important task of the application stage.

A consequence of the software-based implementation of this stage is that it is
not divided into substages, as are the geometry processing, rasterization, and pixel
processing stages.1 However, to increase performance, this stage is often executed
in parallel on several processor cores. In CPU design, this is called a superscalar
construction, since it is able to execute several processes at the same time in the same
stage. Section 18.5 presents various methods for using multiple processor cores.

One process commonly implemented in this stage is collision detection. After a
collision is detected between two objects, a response may be generated and sent back
to the colliding objects, as well as to a force feedback device. The application stage
is also the place to take care of input from other sources, such as the keyboard, the
mouse, or a head-mounted display. Depending on this input, several different kinds of
actions may be taken. Acceleration algorithms, such as particular culling algorithms
(Chapter 19), are also implemented here, along with whatever else the rest of the
pipeline cannot handle.

2.3 Geometry Processing
The geometry processing stage on the GPU is responsible for most of the per-triangle
and per-vertex operations. This stage is further divided into the following functional
stages: vertex shading, projection, clipping, and screen mapping (Figure 2.3).

Projection ClippingVertex
Shading

Screen
Mapping

Figure 2.3. The geometry processing stage divided into a pipeline of functional stages.

1Since a CPU itself is pipelined on a much smaller scale, you could say that the application stage
is further subdivided into several pipeline stages, but this is not relevant here.

Tiago
Realce

Tiago
Realce

JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

Geometry Processing - Clipping

• After the projection transformation the objects are said to be in clip coordinates

• The GPU vertex shader must always output the corresponding clip coordinates of the input vertex

• Clipping is the process of throwing away the parts of a primitive that do not lie inside the canonical
view volume

• Clipping is performed in homogeneous coordinates

20 2. The Graphics Rendering Pipeline

Figure 2.6. After the projection transform, only the primitives inside the unit cube (which correspond
to primitives inside the view frustum) are needed for continued processing. Therefore, the primitives
outside the unit cube are discarded, and primitives fully inside are kept. Primitives intersecting with
the unit cube are clipped against the unit cube, and thus new vertices are generated and old ones
are discarded.

2.3.4 Screen Mapping
Only the (clipped) primitives inside the view volume are passed on to the screen map-
ping stage, and the coordinates are still three-dimensional when entering this stage.
The x- and y-coordinates of each primitive are transformed to form screen coordinates.
Screen coordinates together with the z-coordinates are also called window coordinates.
Assume that the scene should be rendered into a window with the minimum corner
at (x1, y1) and the maximum corner at (x2, y2), where x1 < x2 and y1 < y2. Then the
screen mapping is a translation followed by a scaling operation. The new x- and y-
coordinates are said to be screen coordinates. The z-coordinate ([−1,+1] for OpenGL
and [0, 1] for DirectX) is also mapped to [z1, z2], with z1 = 0 and z2 = 1 as the default
values. These can be changed with the API, however. The window coordinates along
with this remapped z-value are passed on to the rasterizer stage. The screen mapping
process is depicted in Figure 2.7.

Figure 2.7. The primitives lie in the unit cube after the projection transform, and the screen mapping
procedure takes care of finding the coordinates on the screen.

Tiago
Realce

JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

Geometry Processing - Screen Mapping

• In the final stage, after clipping, the projected objects are transformed to
screen space

• The rectangular area spanning from (-1,-1) to (1,1) is transformed to
screen space using a viewport defined in integer screen coordinates.

• Screen coordinates together with the z coordinate are also called window
coordinates.

14 2. The Graphics Rendering Pipeline

stage algorithm or setting could decrease the number of triangles to be rendered.
All this said, some application work can be performed by the GPU, using a separate

mode called a compute shader. This mode treats the GPU as a highly parallel general
processor, ignoring its special functionality meant specifically for rendering graphics.

At the end of the application stage, the geometry to be rendered is fed to the
geometry processing stage. These are the rendering primitives, i.e., points, lines, and
triangles, that might eventually end up on the screen (or whatever output device is
being used). This is the most important task of the application stage.

A consequence of the software-based implementation of this stage is that it is
not divided into substages, as are the geometry processing, rasterization, and pixel
processing stages.1 However, to increase performance, this stage is often executed
in parallel on several processor cores. In CPU design, this is called a superscalar
construction, since it is able to execute several processes at the same time in the same
stage. Section 18.5 presents various methods for using multiple processor cores.

One process commonly implemented in this stage is collision detection. After a
collision is detected between two objects, a response may be generated and sent back
to the colliding objects, as well as to a force feedback device. The application stage
is also the place to take care of input from other sources, such as the keyboard, the
mouse, or a head-mounted display. Depending on this input, several different kinds of
actions may be taken. Acceleration algorithms, such as particular culling algorithms
(Chapter 19), are also implemented here, along with whatever else the rest of the
pipeline cannot handle.

2.3 Geometry Processing
The geometry processing stage on the GPU is responsible for most of the per-triangle
and per-vertex operations. This stage is further divided into the following functional
stages: vertex shading, projection, clipping, and screen mapping (Figure 2.3).

Projection ClippingVertex
Shading

Screen
Mapping

Figure 2.3. The geometry processing stage divided into a pipeline of functional stages.

1Since a CPU itself is pipelined on a much smaller scale, you could say that the application stage
is further subdivided into several pipeline stages, but this is not relevant here.

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

Geometry Processing - Screen Mapping

• The viewport spans from (x1, y1) to (x2, y2)

• Pixel centers have their locations at .5 (0.5, 1.5, 2.5, …)

• Left/bottom* side of pixel 0 has x/y coordinate equal to 0

• Left/bottom* side of pixel 1 has x/y coordinate equal to 1

20 2. The Graphics Rendering Pipeline

Figure 2.6. After the projection transform, only the primitives inside the unit cube (which correspond
to primitives inside the view frustum) are needed for continued processing. Therefore, the primitives
outside the unit cube are discarded, and primitives fully inside are kept. Primitives intersecting with
the unit cube are clipped against the unit cube, and thus new vertices are generated and old ones
are discarded.

2.3.4 Screen Mapping
Only the (clipped) primitives inside the view volume are passed on to the screen map-
ping stage, and the coordinates are still three-dimensional when entering this stage.
The x- and y-coordinates of each primitive are transformed to form screen coordinates.
Screen coordinates together with the z-coordinates are also called window coordinates.
Assume that the scene should be rendered into a window with the minimum corner
at (x1, y1) and the maximum corner at (x2, y2), where x1 < x2 and y1 < y2. Then the
screen mapping is a translation followed by a scaling operation. The new x- and y-
coordinates are said to be screen coordinates. The z-coordinate ([−1,+1] for OpenGL
and [0, 1] for DirectX) is also mapped to [z1, z2], with z1 = 0 and z2 = 1 as the default
values. These can be changed with the API, however. The window coordinates along
with this remapped z-value are passed on to the rasterizer stage. The screen mapping
process is depicted in Figure 2.7.

Figure 2.7. The primitives lie in the unit cube after the projection transform, and the screen mapping
procedure takes care of finding the coordinates on the screen.

Tiago
Realce

Tiago
Realce

JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

12 2. The Graphics Rendering Pipeline

We will explain the different stages of the rendering pipeline, with a focus on
function rather than implementation. Relevant details for applying these stages will
be covered in later chapters.

2.1 Architecture
In the physical world, the pipeline concept manifests itself in many different forms,
from factory assembly lines to fast food kitchens. It also applies to graphics rendering.
A pipeline consists of several stages [715], each of which performs part of a larger task.

The pipeline stages execute in parallel, with each stage dependent upon the result
of the previous stage. Ideally, a nonpipelined system that is then divided into n
pipelined stages could give a speedup of a factor of n. This increase in performance
is the main reason to use pipelining. For example, a large number of sandwiches can
be prepared quickly by a series of people—one preparing the bread, another adding
meat, another adding toppings. Each passes the result to the next person in line and
immediately starts work on the next sandwich. If each person takes twenty seconds
to perform their task, a maximum rate of one sandwich every twenty seconds, three
a minute, is possible. The pipeline stages execute in parallel, but they are stalled
until the slowest stage has finished its task. For example, say the meat addition
stage becomes more involved, taking thirty seconds. Now the best rate that can be
achieved is two sandwiches a minute. For this particular pipeline, the meat stage is
the bottleneck, since it determines the speed of the entire production. The toppings
stage is said to be starved (and the customer, too) during the time it waits for the
meat stage to be done.

This kind of pipeline construction is also found in the context of real-time com-
puter graphics. A coarse division of the real-time rendering pipeline into four main
stages—application, geometry processing, rasterization, and pixel processing—is shown
in Figure 2.2. This structure is the core—the engine of the rendering pipeline—which
is used in real-time computer graphics applications and is thus an essential base for

Application
Geometry
Processing Rasterization

Pixel
Processing

Figure 2.2. The basic construction of the rendering pipeline, consisting of four stages: application,
geometry processing, rasterization, and pixel processing. Each of these stages may be a pipeline in
itself, as illustrated below the geometry processing stage, or a stage may be (partly) parallelized, as
shown below the pixel processing stage. In this illustration, the application stage is a single process,
but this stage could also be pipelined or parallelized. Note that rasterization finds the pixels inside
a primitive, e.g., a triangle.

Rasterization

• Takes as input a set of transformed and
projected vertices and it finds the pixels that
are considered as part of the primitive being
drawn

• For a triangle, each set of three vertices
result in a set of pixels considered to be
inside the triangle (pixel centers inside the
triangle) and that need to be further
processed

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

Rasterization

• Rasterization is subdivided in two functional stages

• The first stage is called Triangle Setup (or Primitive Assembly) and it picks groups of vertices to form
the primitive (1 for points, 2 for lines and 3 for triangles). Triangles are born here! Differentials and
edge equations are computed in this stage

• Triangle traversal generates a fragment for each pixel that has its center point covered by the
primitive. Data associated with each fragment is interpolated from the data generated at each vertex
of the primitive (includes depth and any shading data that was generated during vertex shading)

• All samples that are inside a primitive are then sent to the pixel processing stage

22 2. The Graphics Rendering Pipeline

MergingTriangle
Setup

Triangle
Traversal

Pixel
Shading}

Rasterization

}
Pixel Processing

Figure 2.8. Left: rasterization split into two functional stages, called triangle setup and triangle
traversal. Right: pixel processing split into two functional stages, namely, pixel processing and
merging.

“insideness.” The simplest case uses a single point sample in the center of each
pixel, and so if that center point is inside the triangle then the corresponding pixel is
considered inside the triangle as well. You may also use more than one sample per
pixel using supersampling or multisampling antialiasing techniques (Section 5.4.2).
Yet another way is to use conservative rasterization, where the definition is that a
pixel is “inside” the triangle if at least part of the pixel overlaps with the triangle
(Section 23.1.2).

2.4.1 Triangle Setup
In this stage the differentials, edge equations, and other data for the triangle are
computed. These data may be used for triangle traversal (Section 2.4.2), as well as
for interpolation of the various shading data produced by the geometry stage. Fixed-
function hardware is used for this task.

2.4.2 Triangle Traversal
Here is where each pixel that has its center (or a sample) covered by the triangle is
checked and a fragment generated for the part of the pixel that overlaps the trian-
gle. More elaborate sampling methods can be found in Section 5.4. Finding which
samples or pixels are inside a triangle is often called triangle traversal. Each triangle
fragment’s properties are generated using data interpolated among the three triangle
vertices (Chapter 5). These properties include the fragment’s depth, as well as any
shading data from the geometry stage. McCormack et al. [1162] offer more informa-
tion on triangle traversal. It is also here that perspective-correct interpolation over
the triangles is performed [694] (Section 23.1.1). All pixels or samples that are inside
a primitive are then sent to the pixel processing stage, described next.

2.5 Pixel Processing
At this point, all the pixels that are considered inside a triangle or other primitive
have been found as a consequence of the combination of all the previous stages. The

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

12 2. The Graphics Rendering Pipeline

We will explain the different stages of the rendering pipeline, with a focus on
function rather than implementation. Relevant details for applying these stages will
be covered in later chapters.

2.1 Architecture
In the physical world, the pipeline concept manifests itself in many different forms,
from factory assembly lines to fast food kitchens. It also applies to graphics rendering.
A pipeline consists of several stages [715], each of which performs part of a larger task.

The pipeline stages execute in parallel, with each stage dependent upon the result
of the previous stage. Ideally, a nonpipelined system that is then divided into n
pipelined stages could give a speedup of a factor of n. This increase in performance
is the main reason to use pipelining. For example, a large number of sandwiches can
be prepared quickly by a series of people—one preparing the bread, another adding
meat, another adding toppings. Each passes the result to the next person in line and
immediately starts work on the next sandwich. If each person takes twenty seconds
to perform their task, a maximum rate of one sandwich every twenty seconds, three
a minute, is possible. The pipeline stages execute in parallel, but they are stalled
until the slowest stage has finished its task. For example, say the meat addition
stage becomes more involved, taking thirty seconds. Now the best rate that can be
achieved is two sandwiches a minute. For this particular pipeline, the meat stage is
the bottleneck, since it determines the speed of the entire production. The toppings
stage is said to be starved (and the customer, too) during the time it waits for the
meat stage to be done.

This kind of pipeline construction is also found in the context of real-time com-
puter graphics. A coarse division of the real-time rendering pipeline into four main
stages—application, geometry processing, rasterization, and pixel processing—is shown
in Figure 2.2. This structure is the core—the engine of the rendering pipeline—which
is used in real-time computer graphics applications and is thus an essential base for

Application
Geometry
Processing Rasterization

Pixel
Processing

Figure 2.2. The basic construction of the rendering pipeline, consisting of four stages: application,
geometry processing, rasterization, and pixel processing. Each of these stages may be a pipeline in
itself, as illustrated below the geometry processing stage, or a stage may be (partly) parallelized, as
shown below the pixel processing stage. In this illustration, the application stage is a single process,
but this stage could also be pipelined or parallelized. Note that rasterization finds the pixels inside
a primitive, e.g., a triangle.

Pixel Processing

• In the final stage, each pixel is “shaded” by
a program that computes its final color and
may perform depth testing to determine if
the pixel is visible

• Other per pixel operations such as blending
the newly computed color with a previous
color is also possible

• The rasterization and the pixel processing
stages are totally performed in the GPU

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

Pixel Processing

• This stage is divided in two functional stages

• Pixel shading is performed on every sample using interpolated data generated before. This executes on a GPU and it is fully
programmable. The pixel shader is provided by the programmer to shade each pixel and texture mapping is usually performed here.

• After a final color is computed for each fragment, it needs to be combined with whatever lies on screen at the output location. It is
not a fully programmable stage but a highly configurable one. The visibility test for the fragment is performed in this stage (Z-Buffer)

• Besides color (frame buffer) and depth (z-buffer), we can also use the alpha channel (part of the frame buffer that handles
transparency/opacity), the stencil buffer (a buffer where a primitive can also be written and that can be used to control rendering to
the color buffer and the z-buffer)

• The operations at the end of the pipeline are raster operations or blend operations. The frame buffer is normally used to refer to all
the buffers in the system. Double buffering (two color buffers) is used to avoid flickering or image tearing.

22 2. The Graphics Rendering Pipeline

MergingTriangle
Setup

Triangle
Traversal

Pixel
Shading}

Rasterization

}
Pixel Processing

Figure 2.8. Left: rasterization split into two functional stages, called triangle setup and triangle
traversal. Right: pixel processing split into two functional stages, namely, pixel processing and
merging.

“insideness.” The simplest case uses a single point sample in the center of each
pixel, and so if that center point is inside the triangle then the corresponding pixel is
considered inside the triangle as well. You may also use more than one sample per
pixel using supersampling or multisampling antialiasing techniques (Section 5.4.2).
Yet another way is to use conservative rasterization, where the definition is that a
pixel is “inside” the triangle if at least part of the pixel overlaps with the triangle
(Section 23.1.2).

2.4.1 Triangle Setup
In this stage the differentials, edge equations, and other data for the triangle are
computed. These data may be used for triangle traversal (Section 2.4.2), as well as
for interpolation of the various shading data produced by the geometry stage. Fixed-
function hardware is used for this task.

2.4.2 Triangle Traversal
Here is where each pixel that has its center (or a sample) covered by the triangle is
checked and a fragment generated for the part of the pixel that overlaps the trian-
gle. More elaborate sampling methods can be found in Section 5.4. Finding which
samples or pixels are inside a triangle is often called triangle traversal. Each triangle
fragment’s properties are generated using data interpolated among the three triangle
vertices (Chapter 5). These properties include the fragment’s depth, as well as any
shading data from the geometry stage. McCormack et al. [1162] offer more informa-
tion on triangle traversal. It is also here that perspective-correct interpolation over
the triangles is performed [694] (Section 23.1.1). All pixels or samples that are inside
a primitive are then sent to the pixel processing stage, described next.

2.5 Pixel Processing
At this point, all the pixels that are considered inside a triangle or other primitive
have been found as a consequence of the combination of all the previous stages. The

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

Tiago
Realce

JOGOS E SIMULAÇÃO Fernando Birra

Rui Nóbrega

Further readings and resources

• Cap. 2 Real Time Rendering - T Akenine-Möller et. Al (adopted book)

